Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neth Heart J ; 29(5): 280-287, 2021 May.
Article in English | MEDLINE | ID: mdl-33506376

ABSTRACT

BACKGROUND: The development of atrial fibrillation (AF) is a complex multifactorial process. Over the past few decades, much has been learned about the pathophysiological processes that can lead to AF from a variety of specific disease models in animals. However, our ability to recognise these disease processes in AF patients is still limited, which has contributed to the limited progress in improving rhythm control in AF. AIMS/OBJECTIVES: We believe that a better understanding and detection of the individual pathophysiological mechanisms underlying AF is a prerequisite for developing patient-tailored therapies. The RACE V Tissue Bank Project will contribute to the unravelling of the main molecular mechanisms of AF by studying histology and genome-wide RNA expression profiles and combining this information with detailed phenotyping of patients undergoing cardiac surgery. METHODS: As more and more evidence suggests that AF may occur not only during the first days but also during the months and years after surgery, we will systematically study the incidence of AF during the first years after cardiac surgery in patients with or without a history of AF. Both the overall AF burden as well as the pattern of AF episodes will be studied. Lastly, we will study the association between the major molecular mechanisms and the clinical presentation of the patients, including the incidence and pattern of AF during the follow-up period. CONCLUSION: The RACE V Tissue Bank Project combines deep phenotyping of patients undergoing cardiac surgery, including rhythm follow-up, analysis of molecular mechanisms, histological analysis and genome-wide RNA sequencing. This approach will provide detailed insights into the main pathological alterations associated with AF in atrial tissue and thereby contribute to the development of individualised, mechanistically informed patient-tailored treatment for AF.

2.
Sci Rep ; 10(1): 20074, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208780

ABSTRACT

Many cardiac pathologies involve changes in tissue structure. Conventional analysis of structural features is extremely time-consuming and subject to observer bias. The possibility to determine spatial interrelations between these features is often not fully exploited. We developed a staining protocol and an ImageJ-based tool (JavaCyte) for automated histological analysis of cardiac structure, including quantification of cardiomyocyte size, overall and endomysial fibrosis, spatial patterns of endomysial fibrosis, fibroblast density, capillary density and capillary size. This automated analysis was compared to manual quantification in several well-characterized goat models of atrial fibrillation (AF). In addition, we tested inter-observer variability in atrial biopsies from the CATCH-ME consortium atrial tissue bank, with patients stratified by their cardiovascular risk profile for structural remodeling. We were able to reproduce previous manually derived histological findings in goat models for AF and AV block (AVB) using JavaCyte. Furthermore, strong correlation was found between manual and automated observations for myocyte count (r = 0.94, p < 0.001), myocyte diameter (r = 0.97, p < 0.001), endomysial fibrosis (r = 0.98, p < 0.001) and capillary count (r = 0.95, p < 0.001) in human biopsies. No significant variation between observers was observed (ICC = 0.89, p < 0.001). We developed and validated an open-source tool for high-throughput, automated histological analysis of cardiac tissue properties. JavaCyte was as accurate as manual measurements, with less inter-observer variability and faster throughput.


Subject(s)
Algorithms , Atrial Fibrillation/physiopathology , Automation , Heart Atria/chemistry , Heart Atria/physiopathology , Aged , Animals , Female , Goats , Humans , Male , Middle Aged
3.
Neth Heart J ; 28(10): 526-536, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32504340

ABSTRACT

INTRODUCTION: Infective endocarditis (IE) is associated with a high in-hospital and long term mortality. Although progress has been made in diagnostic approach and management of IE, morbidity and mortality of IE remain high. In the latest European guidelines, the importance of the multi-modality imaging in diagnosis and follow up of IE is emphasized. AIM: The aim was to provide information regarding mortality and adverse events of IE, to determine IE characteristics and to assess current use of imaging in the diagnostic workup of IE. METHODS: This is a prospective observational cohort study. We used data from the EURO-ENDO registry. Seven hospitals in the Netherlands have participated and included patients with IE between April 2016 and April 2018. RESULTS: A total of 139 IE patients were included. Prosthetic valve endocarditis constituted 32.4% of the cases, cardiac device related IE 7.2% and aortic root prosthesis IE 3.6%. In-hospital mortality was 14.4% (20 patients) and one-year mortality was 21.6% (30 patients). The incidence of embolic events under treatment was 16.5%, while congestive heart failure or cardiogenic shock occurred in 15.1% of the patients. Transthoracic and transoesophageal echocardiography were performed most frequently (97.8%; 81.3%) and within 3 days after IE suspicion, followed by 18F­fluorodeoxyglucose positron emission tomography/computed tomography (45.3%) within 6 days and multi-slice computed tomography (42.4%) within 7 days. CONCLUSION: We observed a high percentage of prosthetic valve endocarditis, rapid and extensive use of imaging and a relatively low in-hospital and one-year mortality of IE in the Netherlands. Limitations include possible selection bias.

SELECTION OF CITATIONS
SEARCH DETAIL
...